Helical plasma-wall interaction in the RFX reversed-field pinch: toroidal effects, localization and role of sidebands

G.Spizzo¹, M.Agostini¹, P.Scarin¹, S.Cappello¹, L.Marrelli¹, M.Spolaore¹, D.Terranova¹, M.Veranda¹, N.Vianello¹, R. B. White², O.Schmitz³, P.Zanca¹

¹ Consorzio RFX, Euratom-ENEA Association, Padova - Italy
 ² Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543
 ³ Dept. Engineering Physics, UoW, Madison, WI 53706

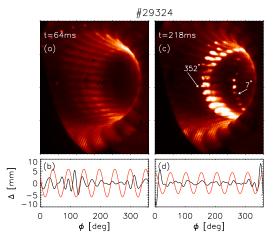
November 8, 2018

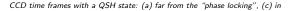
60th DPP APS Portland

Outline

- Motivation: study of plasma-wall interaction (PWI) in the RFX edge, with helical symmetry [1]
- With a large m/n = 1/7 mode resonating in the core, electron pressure, floating potential and edge topology (field connection length, Poincaré recurrence time) follow the dominant helical symmetry, with a $\sim 25\%$ of 0/7 correction [2, 3, 4]
- What about the m = 1, n > 7 "secondary" modes?
- Purpose of this contributed paper is to explore the role of these modes.

Outline/2




Helical state (QSH) \equiv good core confinement + good helical SOL in the plasma edge

G. Spizzo (Consorzio RFX)

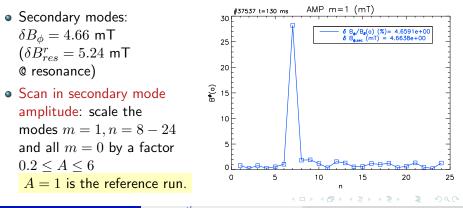
60th DPP APS Portland

Outlin

the locking region

- Secondary modes phase-lock together – but **not** to the wall! See frames (c),(d) → phenomenon well-known in the RFP [5]
- The locking structure involves modes with m = 1 and $n \ge 8$
- The locking seems to dominate PWI at the "locking angle", despite the QSH
- Is this result consistent with the knowledge we have of the RFX-mod edge helical topology?

G. Spizzo (Consorzio RFX)

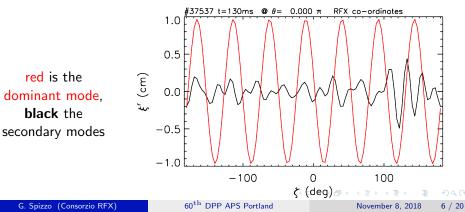

60th DPP APS Portland

November 8, 2018 4 / 20

The code

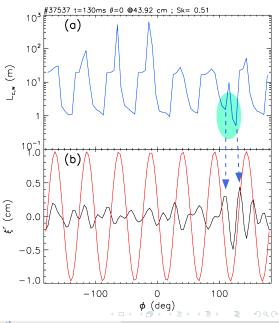
The code

- Reference scenario [2, 3, 4] : RFX-mod discharge # 37537, t = 130 ms, high current, low-density case ($I_p = 1.4$ MA, $n/n_G = 0.07$), good helical core with peak $T_e = 1.2$ keV.
- We use the guiding center code ORBIT [6].

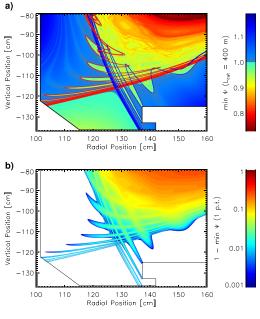


The code

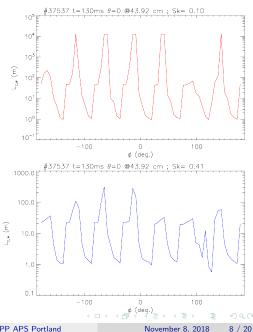
• Important parameter to describe RFX edge [7]: ideal displacement


$$\xi^r = \vec{\xi} \cdot \nabla r = \frac{\psi_1}{\psi'_0} = \frac{\psi_1}{r(\frac{1}{q} - \frac{n}{m})} \tag{1}$$

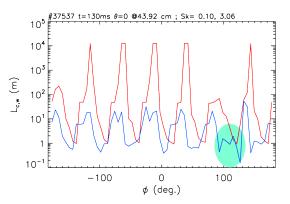
- Good phenomenological parameter "Scarin number" $S_k = \frac{\xi_{sec}}{\xi_{dom}}$
- In the reference A = 1 run we get $S_k = 0.51$


Reference case
$$S_k = 0.5$$

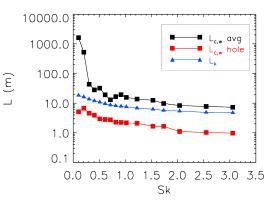
- Large-scale symmetry of connection length L_{c,w} is m/n = 1/7, consistent with literature [2, 3, 4]
- ... BUT at $\phi \sim 120^{\circ}$ two additional minima appear (cyan shade)
- Phenomenology is similar to the homoclinic lobes (a.k.a. "fingers") in the divertor region of tokamaks with RMPs [8]


Reference case
$$S_k = 0.5$$

- Large-scale symmetry of connection length L_{c,w} is m/n = 1/7, consistent with literature [2, 3, 4]
- ... BUT at $\phi \sim 120^{\circ}$ two additional minima appear (cyan shade)
- Phenomenology is similar to the homoclinic lobes (a.k.a. "fingers") in the divertor region of tokamaks with RMPs [8]


Scan: $A = 0.2, S_k = 0.1$

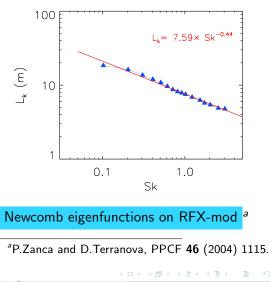
- Ideal case: A = 0.2 $(S_k = 0.1)$, there is no distortion of the helical $L_{c,w}$ pattern due to locking
- A threshold value is A = 0.8 $(S_k = 0.4)$: the two additional minima start to be visible


Full scan: $0.2 \le A \le 6$, $0.1 \le S_k \le 3$

- When increasing *A*, *L*_{*c,w*} decreases everywhere
- The region of low $L_{c,w}$ at the locking angle broadens

Statistical analysis

- The average $L_{c,w}$ decreases everywhere as a function of A, not only in the locking region ("hole")
- On average, the RFX edge is ergodic, $\langle L_{c,w} \rangle > L_k$, with L_k the Kolmogorov length evaluated at $\psi_p = 0.72$ (r = 35 cm)
- The "hole" is always laminar, $L_{c,w}^{hole} < L_k$

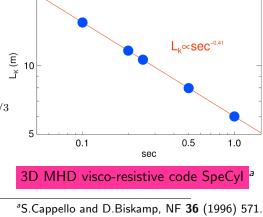


Parenthesis ...

- The scaling of L_k with S_k is of the type $L_k \approx 8 \times S_k^{-0.44}$
- It is consistent with a scaling of the Lyapunov exponent

$$\sigma_r \sim (D_m)^{1/3} = \left(\frac{\delta B}{B}\right)^{\alpha/3} \tag{2}$$

- In the RFX case, $\alpha = 1.6$ [9], hence $\sigma_r \sim \delta B^{0.53}$
- By definition, $L_k = 1/\sigma$

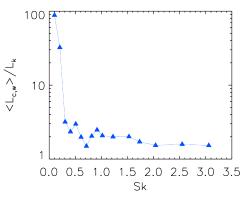


Parenthesis ...

- The scaling of L_k with S_k is of the type $L_k \approx 8 \times S_k^{-0.44}$
- It is consistent with a scaling of the Lyapunov exponent

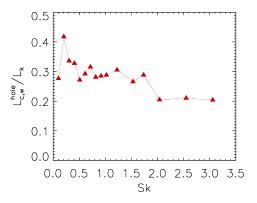
$$\sigma_r \sim (D_m)^{1/3} = \left(\frac{\delta B}{B}\right)^{\alpha/3} \tag{2}$$

- In the RFX case, $\alpha = 1.6$ [9], hence $\sigma_r \sim \delta B^{0.53}$
- By definition, $L_k = 1/\sigma$

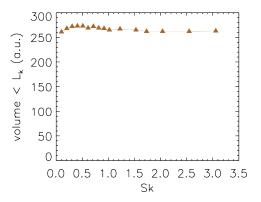


11 / 20

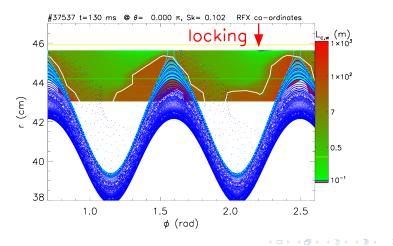
Threshold for a good SOL


- $S_k > 0.3 \ (A > 0.6)$ there is little change, $\langle L_{c,w} \rangle / L_k \approx 2$
- Instead, for $S_k \le 0.3$ connection lengths increase by 2 orders of magnitude \rightarrow good SOL
- In the upgraded

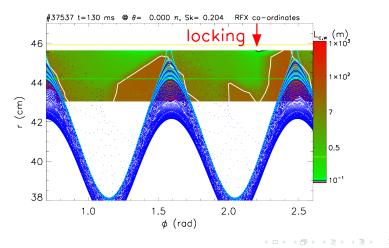
RFX-mod2 machine , a lower S_k value could be reached, with an improvement of plasma performance


Homoclinic lobes at ϕ_{lock}

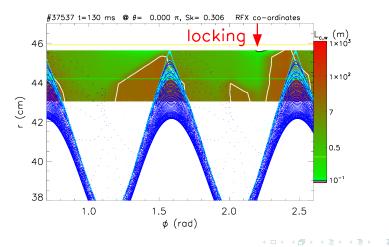
- The ratio $L_{c,w}^{hole}/L_k \approx 0.3 \text{ for all} \\ \text{values of } A$
- The locking region (homoclinic lobes) is always "laminar" (in RMP terminology)
- It provides a shortcut for electron transport, from the hot core directly to the wall (already shown in the case of 3D RFP MHD simulations [10])


Volume of laminar edge

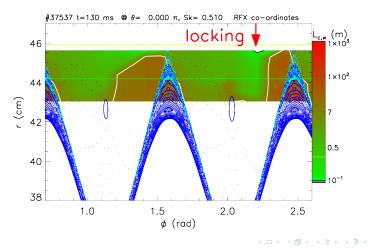
- Despite the fact that the edge topological texture is better at low A, the volume of laminar plasma $L_{c,w} < L_k$, is constant $\forall A$
- It is not correct to state that the "hole widens" by increasing the secondary mode amplitude A


Sequence: A = 0.2 ($S_k = 0.1$)

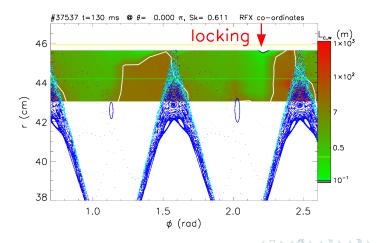
- Contour of $L_{c,w}$ and Poincaré with n = 7 modes, only
- Two toroidal periods of the $n=7 \mod n$


Sequence: A = 0.4 ($S_k = 0.2$)

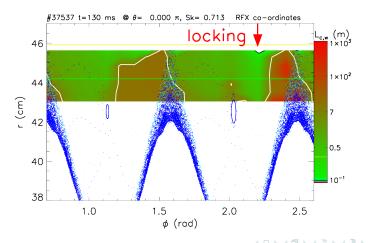
- Contour of $L_{c,w}$ and Poincaré with n = 7 modes, only
- Two toroidal periods of the $n=7 \mod n$


Sequence: $A = 0.6 (S_k = 0.3)$

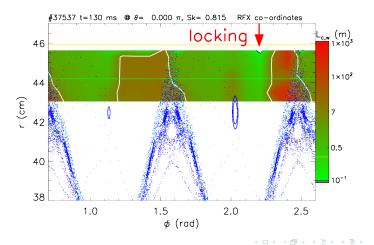
- Contour of $L_{c,w}$ and Poincaré with n = 7 modes, only
- Two toroidal periods of the $n=7 \mod n$


Sequence: A = 1 ($S_k = 0.5$) reference run

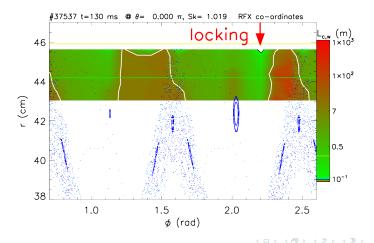
- Contour of $L_{c,w}$ and Poincaré with n = 7 modes, only
- Two toroidal periods of the $n=7 \mod 2$


Sequence: A = 1.2 ($S_k = 0.6$)

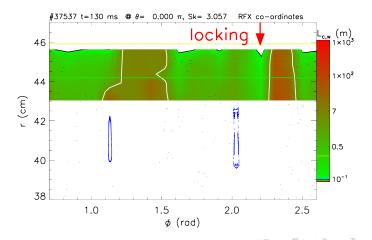
- Contour of $L_{c,w}$ and Poincaré with n = 7 modes, only
- Two toroidal periods of the $n=7 \mod 2$


Sequence: A = 1.4 ($S_k = 0.7$)

- Contour of $L_{c,w}$ and Poincaré with n = 7 modes, only
- Two toroidal periods of the $n = 7 \mod n$


Sequence: $A = 1.6 (S_k = 0.8)$

- Contour of $L_{c,w}$ and Poincaré with n = 7 modes, only
- Two toroidal periods of the $n = 7 \mod n$


Sequence: A = 2 ($S_k = 1$) threshold for crash [1]

- Contour of $L_{c,w}$ and Poincaré with n = 7 modes, only
- Two toroidal periods of the $n=7 \mod 2$

Sequence: A = 6 ($S_k = 3$) MH state

- Contour of $L_{c,w}$ and Poincaré with n = 7 modes, only
- Two toroidal periods of the $n=7 \mod n$

- The 0/7 and 1/7 islands are separated by a resonance layer: in previous work we have shown that this layer determines PWI in the RFX-mod [2, 3, 4]
- $S_k = 0.7$ seems to be the critical value for stochastization of this layer
- Apply the Chirikhov overlap criterion: "hard" version

$$K = \frac{w_{1,7} + w_{0,7}}{2|r_{rev} - r_{1,7}|} \tag{3}$$

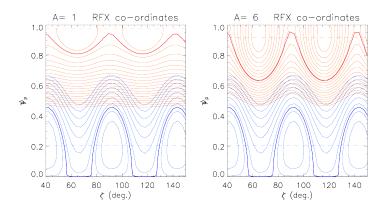
where $q(r_{rev}) = 0$ is the *reversal surface*

- "Soft" version ¹: $K \approx 2/3$
- 'But 1/7 "islands" are very large, so a quasilinear estimate of the widths w is not possible \rightarrow we have to employ the helical flux $\chi=m\psi_p-n\psi$

 ¹ According to numerical estimates on the disappearance of the last KAM surface in

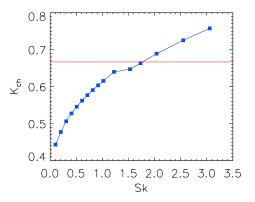
 the Standard Map, see Lieberman & Lichtenberg, chap.4, p.292

 G. Spizzo (Consorzio REX)


 60th DPP APS Portland

 November 8, 2018

 16 / 20


• Example of calculation: $S_k=0.5$ (reference) and $S_k=3$ (MH state)

• The separatrices are the lines in **bold**

Estimate of Chirikov K

- K = 2/3 corresponds to $S_k = 1.7 \ (A = 3.4)$, a value well beyond the layer stochastization in the Poincaré (see Sec. 4)
- Well-known limitation of the Chirikov overlap criterion (Lieberman & Lichtenberg, chap.4)

Estimate of Chirikov K

- K = 2/3 corresponds to $S_k = 1.7 (A = 3.4)$, a value well beyond the layer stochastization in the Poincaré (see Sec. 4)
- Well-known limitation of the Chirikov overlap criterion (Lieberman & Lichtenberg, chap.4)
- More refined methods are e.g. Escande & Doveil, J. Stat. Phys. 26 (1981) 257.

Conclusions

- Scan in "secondary" mode (m = 1, n > 7) amplitude 0.2 < A < 6, with A = 1 the reference scenario, shows the presence of homoclinic lobes at the locking angle.
- Phenomenology in all respects similar to the divertor "fingers", see e.g. [8]
- In vicinity of the locking angle ϕ_{lock} , electron transport is shortcut from the hot core, directly to the wall.
- The concept is not new (already shown in the case of 3D RFP MHD simulations [10] ...), but here it is revisited within the RMP terminology ("ergodic" and "laminar" zones)
- $\bullet\,$ The channel @ ϕ_{lock} deepens with increasing A, but all of the topology deteriorates
- Two thresholds can be recognized: $A \sim 0.6$ ($S_k = 0.3$) for the removal of the channel, and A = 1.4 ($S_k = 0.7$) for the stochastization of the resonance layer in between the 0/7 and 1/7 islands.

G. Spizzo (Consorzio RFX)

[1] P. Scarin, M.Agostini, G.Spizzo and P.Zanca

in Fusion Energy Conf. (Proc. 27th Int. Conf. Gandhinagar, India, 22-27 October 2018), p.EX/P8-14,

[2] P. Scarin et al.

Nucl. Mater. Energy 12 (2017) 913.

[3] M. Agostini et al.

Nucl. Fusion. 57 (2017) 076033.

[4] G. Spizzo et al.

Nucl. Fusion. 57 (2017) 126055.

[5] Kusano, Tamano and Sato Nucl. Fusion. 31 (1991) 1923.

[6] R.B. White and M.S. Chance Phys. Fluids 27 (1984) 2455.

[7] P. Scarin et al.

- Nucl. Fusion. 51 (2011) 073002.
- [8] H. Frerichs and O. Schmitz Phys. Plasmas 22 (2015) 072508.

[9] G. Spizzo, R.B. White and S. Cappello Phys. Plasmas 14 (2007) 102310.

My 8-year-old son's tokamak project

Leave your name for a copy of the poster

name	e-mail
<u> </u>	

Ja C

1