Weak Chaos in the Plasma of a Fusion Device

Gianluca Spizzo*, Pasquale Porcu[†], Marco Veranda*

*Consorzio RFX and ISTP-CNR, Padova, Italy [†]CRF - University of Padova, Padova, Italy

with the help of Roscoe White (PPPL), Matteo Agostini, Paolo Scarin, David Terranova, Matteo Zuin, Lorella Carraro, Marco Gobbin, Lionello Marrelli ... and many others!

June 14, 2023

 Toroidal magnetic confinement devices for nuclear fusion research are interesting environments for the application of chaos theory

- Toroidal magnetic confinement devices for nuclear fusion research are interesting environments for the application of chaos theory
- Toroidal magnetic flux surfaces = KAM tori

- Toroidal magnetic confinement devices for nuclear fusion research are interesting environments for the application of chaos theory
- Toroidal magnetic flux surfaces = KAM tori
- ► Magnetic perturbations (spontaneous-magnetohydrodynamic, or imposed by external means) break KAM surfaces → islands

- Toroidal magnetic confinement devices for nuclear fusion research are interesting environments for the application of chaos theory
- Toroidal magnetic flux surfaces = KAM tori
- ► Magnetic perturbations (spontaneous-magnetohydrodynamic, or imposed by external means) break KAM surfaces → islands
- Resonance of many magnetic islands bring in chaos

- Toroidal magnetic confinement devices for nuclear fusion research are interesting environments for the application of chaos theory
- Toroidal magnetic flux surfaces = KAM tori
- ► Magnetic perturbations (spontaneous-magnetohydrodynamic, or imposed by external means) break KAM surfaces → islands
- Resonance of many magnetic islands bring in chaos
- Study and control of chaos is fundamental for nuclear fusion research → for example, for controlling Plasma-wall Interaction (PWI)

RFX group - Padova

$\mathsf{RFX}\operatorname{-mod}^{\alpha}$ ^a

reversed-field pinch (RFP) $\rightarrow R = 2m$, a = 50 cm, plasma current $I_P \approx 0.3 \div 2$ MA electron temperature $T_e \sim 0.2 - 1.2$ keV, density $n_e \sim 1 \div 9 \times 10^{19} m^{-3}$

$$a\alpha = 0, 1, 2$$

RFX group - Padova

m, *n* are the poloidal & toroidal mode numbers

Definition of flux surface:

$$egin{aligned} & F(r, heta,\zeta) = const. \ & ec{B} \cdot
abla F = 0 \end{aligned}$$
 (1

Magnetic field lines wind helically staying tangent to the flux surface

Toroidal flux surfaces \equiv KAM tori

Equilibrium RFX - Padova

(a) Toroidal and Poloidal field \vec{B} (b) Field helicity q, with first two resonances, q = 1/7 and q = 1/8The other resonances, with m = 1, n = 9, 10... are marked as vertical, dashed lines Note the m = 0 modes resonating at the reversal surface, q = 0which are typical of the RFP

Field-line Hamiltonian

The magnetic field line can be expressed in Hamiltonian form¹ The time variable which appears in Hamilton equations is replaced by the poloidal angle θ (small turn around the torus) Find the contravariant representation of the field \vec{B}

$$\vec{B} = \nabla \psi \times \nabla \theta - \nabla \psi_{p} \times \nabla \zeta \tag{2}$$

with $\psi,\,\psi_{\rm P}$ toroidal and poloidal flux, θ,ζ poloidal & toroidal angles Identify

¹R.B. White, *The theory of toroidally confined plasmas*, Imperial College Press (2014), pp.10–13

Field-line Hamiltonian

Then the field-line Hamilton equations are:

$$\frac{\mathrm{d}\zeta}{\mathrm{d}\theta} = \frac{\partial\psi}{\partial\psi_{p}} = q \tag{2}$$
$$\frac{\mathrm{d}\psi_{p}}{\mathrm{d}\theta} = -\frac{\partial\psi}{\partial\zeta} \tag{3}$$

If the configuration is toroidally symmetric, $\frac{\partial \psi}{\partial \zeta} = 0$ and flux surfaces are conserved = intact KAM surfaces $\psi_p = const$. Perturbation can arise (spontaneously or induced on purpose) that break toroidal symmetry: the corresponding *perturbed* Hamiltonian can be expressed as

$$\psi(\psi_p,\theta,\zeta) = \int q d\psi_p + \sum_{m,n} \frac{mg+nl}{n} \alpha_{m,n}(\psi_p) \sin(m\theta - n\zeta) .$$
(4)

which is in the form $H = H_0 + \alpha H_1$

イロン スピン スピン スピン 一日

RFP topology (code ORBIT)

Dominant mode is the q = 1/7 in the core, and 0/7 in the plasma edge. In between, a chaotic sea determined by m = 1, n > 7 resonance overlapping.

RFP topology (code ORBIT)

The chaotic sea touches the wall (yellow line) at $\zeta \approx 0$ in shot #29324 \rightarrow phase locking of the m = 1, n > 7 modes (Locked Mode or LM)

Locked Mode and Plasma-Wall Interaction (PWI)

Locked modes are responsible for enhanced Plasma Wall Interaction (PWI) which induces overheating of the Plasma Facing Components, carbon sputtering, and radiation¹

ightarrow ... all of these must be avoided in a fusion reactor! 😂

Goals:

- Determine which modes are involved in the PWI event;
- Try to mitigate/avoid the LM and associated PWI.

1P.Scarin *et al*, Nuclear Fusion **59**, 086008 (2019) < □ > < ♂ > < ≥ > < ≥ > > ≥ ∽ < <

Topology and connection lengths in the LM region

Topology in the region of the Locked Mode has two distinct symmetries:

 m = 1 chaotic sea which touches the wall;

• m = 0 islands.

Topology and connection lengths in the LM region

Metric to characterize the PWI: connection length $L_{c,w}$ to the wall²:

²F. Nguyen and P. Ghendrih, Nuclear Fusion **37**, 743 (1997) < ≥ · (≥ · (≥ ·) ≥ ·) <

Comparison between connection length and camera images

The map of connection length and camera images of plasma-wall interaction qualitatively $agree^3$:

• $L_{c,w}$ calculated at $\psi_p/\psi_w \sim 0.9$ on the (θ, ζ) plane shows two stripes

³Pasquale Porcu, Master's Thesis, University of Padova (2022) 🗈 २ 🗉 🖉 ७९७

Comparison between connection length and camera images

The map of connection length and camera images of plasma-wall interaction qualitatively $agree^3$:

- $L_{c,w}$ calculated at $\psi_p/\psi_w \sim 0.9$ on the (θ, ζ) plane shows two stripes
 - the left, wide one corresponds to the nearest m = 0 island

³Pasquale Porcu, Master's Thesis, University of Padova (2022) = ► < = ∽ < ⊂

Comparison between connection length and camera images

The map of connection length and camera images of plasma-wall interaction qualitatively $agree^3$:

- L_{c,w} calculated at ψ_p/ψ_w ~ 0.9 on the (θ, ζ) plane shows two stripes
- the left, wide one corresponds to the nearest m = 0 island
- the right, narrow one corresponds to the m = 1 locked mode

³Pasquale Porcu, Master's Thesis, University of Padova (2022) 🗈 🖌 📱 🔊 🧠 🥐

We have seen that the connection length is a good indicator of the chaos topology and PWI in the plasma edge

⁴G. M. Zaslavsky, *Hamiltonian Chaos and Fractional Dynamics*, Oxford University Press, pp.173–186 (2004)

- We have seen that the connection length is a good indicator of the chaos topology and PWI in the plasma edge
- ▶ ... but is not uniquely defined: it depends on start and end points, calculation is clumsy and very long when $\psi_p \rightarrow 0$

⁴G. M. Zaslavsky, *Hamiltonian Chaos and Fractional Dynamics*, Oxford University Press, pp.173–186 (2004)

- We have seen that the connection length is a good indicator of the chaos topology and PWI in the plasma edge
- ▶ ... but is not uniquely defined: it depends on start and end points, calculation is clumsy and very long when $\psi_p \rightarrow 0$
- Better indicator: Poincaré Recurrence Time⁴

⁴G. M. Zaslavsky, *Hamiltonian Chaos and Fractional Dynamics*, Oxford University Press, pp.173–186 (2004)

- We have seen that the connection length is a good indicator of the chaos topology and PWI in the plasma edge
- ▶ ... but is not uniquely defined: it depends on start and end points, calculation is clumsy and very long when $\psi_p \rightarrow 0$
- Better indicator: Poincaré Recurrence Time⁴

$$\tau^{(\text{rec})} = \tau^{(\text{esc})} + \tau^{(\text{ext})}$$
$$= t_{OUT} - t_{IN1} + t_{IN2} - t_{OUT}$$
$$= t_{IN2} - t_{IN1}$$
(6)

⁴G. M. Zaslavsky, *Hamiltonian Chaos and Fractional Dynamics*, Oxford University Press, pp.173–186 (2004)

Poincaré Recurrence Time in RFX

Define an ellipsoid in (ψ_p, θ, ζ) near the LM at $\zeta \approx 0$. Contrary to Boltzmann evaluation for a perfect gas, in a toroidal device $\tau^{(\text{rec})} \lesssim 1000 T$, with T the transit time of a particle (field line) on axis \rightarrow it is not a very large time!

Statistics of recurrences

For each particle we record successive recurrence times in Eq. (6) and calculate the p.d.f. of recurrences

For short times we have an exponential law

$$P(t) = \frac{1}{\tau_{\text{mix}}} \exp\left(\frac{-t}{\tau_{\text{mix}}}\right)$$
(7)
where $\tau_{\text{mix}}v_{th} = L_k$ is the
Kolmogorov length

Statistics of recurrences

For each particle we record successive recurrence times in Eq. (6) and calculate the p.d.f. of recurrences

For longer times there is a power-law tail, $P(t) \sim t^{-\gamma}$ with $\gamma \sim 3$ \rightarrow this tail an unambiguous proof of the existence of "dynamical traps" = islands and sticky regions with zero Lyapunov exponents^a

^aM. Veranda et al. Nuclear Fusion **60**, 016007 (2019)

Map of recurrences

Define the recurrence time as an average over the distribution⁵:

⁵G.Spizzo, M.Agostini, P.Scarin et al., Nuclear Fusion **57**, 126055 (2017) 🛓 🗠 ૧૯

Chaos theory is an important tool to understand particle transport in toroidally confined plasmas for nuclear fusion research

⁶G.Spizzo, R. White and S. Cappello, Physics of Plasmas, 102310 (2007)

- Chaos theory is an important tool to understand particle transport in toroidally confined plasmas for nuclear fusion research
- Unperturbed toroidal flux surfaces = KAM tori

⁶G.Spizzo, R. White and S. Cappello, Physics of Plasmas, 102310 (2007)

⁷L.Marrelli et al, Nuclear Fusion **59**, 076027 (2019) • • • • • • • • • • • • •

- Chaos theory is an important tool to understand particle transport in toroidally confined plasmas for nuclear fusion research
- Unperturbed toroidal flux surfaces = KAM tori
- ► Magnetohydrodynamic modes or applied perturbations break toroidal symmetry → chaos

⁶G.Spizzo, R. White and S. Cappello, Physics of Plasmas, 102310 (2007)

- Chaos theory is an important tool to understand particle transport in toroidally confined plasmas for nuclear fusion research
- Unperturbed toroidal flux surfaces = KAM tori
- ► Magnetohydrodynamic modes or applied perturbations break toroidal symmetry → chaos
- Chaos anyway not far from the Chirikov stochastic threshold: analysis of Poincaré recurrence times show clear signs of dynamical traps, consistent with the subdiffusive character of transport found in RFX plasmas⁶

⁶G.Spizzo, R. White and S. Cappello, Physics of Plasmas, 102310 (2007)

- Chaos theory is an important tool to understand particle transport in toroidally confined plasmas for nuclear fusion research
- Unperturbed toroidal flux surfaces = KAM tori
- ► Magnetohydrodynamic modes or applied perturbations break toroidal symmetry → chaos
- Chaos anyway not far from the Chirikov stochastic threshold: analysis of Poincaré recurrence times show clear signs of dynamical traps, consistent with the subdiffusive character of transport found in RFX plasmas⁶
- This information has been used for the upgrade of the RFX-mod device in Padova, Italy: a modified front-end system will allow for smaller m = 0 modes and a weaker phase-locking of m = 1 modes⁷.