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research are interesting environments for the application of
chaos theory
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» Toroidal magnetic confinement devices for nuclear fusion
research are interesting environments for the application of
chaos theory

» Toroidal magnetic flux surfaces = KAM tori

» Magnetic perturbations (spontaneous-magnetohydrodynamic,
or imposed by external means) break KAM surfaces — islands

» Resonance of many magnetic islands bring in chaos

» Study and control of chaos is fundamental for nuclear fusion
research — for example, for controlling Plasma-wall
Interaction (PWI)
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RFX group - Padova

RFX-mod® 2
reversed-field pinch
(RFP) = R =2m,

a = 50cm, plasma
current Ip =~ 0.3 +2
MA

electron temperature
Te ~0.2—-1.2keV
density
Ne~1+9x10¥9m=3

a=0,1,2
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RFX group - Padova

Definition of flux

surface:
F(r,0,¢) =const.
B-VF =0

(1)

Magnetic field lines
wind helically staying
tangent to the flux

surface
g="= 1
n 10 Toroidal flux surfaces
m, n are the poloidal & toroidal mode numbers = KAM tori
(=] = = = DA
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Equilibrium RFX - Padova

429324 t=218 ms

B (M

—-0.05

(a) and Poloidal field B

(b) Field helicity q, with first two resonances, q = 1/7 and q = 1/8
The other resonances, with m = 1,n =9,10... are marked as
vertical, dashed lines

Note the m = 0 modes resonating at the reversal surface, ¢ =0
which are typical of the RFP
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Field-line Hamiltonian

The magnetic field line can be expressed in Hamiltonian form!
The time variable which appears in Hamilton equations is replaced
by the poloidal angle 6 (small turn around the torus)

Find the contravariant representation of the field B

B =V x VO — Vi, x V¢ (2)

with 1, 1, toroidal and poloidal flux, 8, ( poloidal & toroidal angles
Identify

Hamiltonian = P
Canonical conjugate momentum = 1), (3)
angle = ¢
time = 0
!R.B. White, , Imperial College

Press (2014), pp.10-13
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Field-line Hamiltonian

Then the field-line Hamilton equations are:

¢ _ oy _
@_T%_q (2)
dypp O
= ac G)

If the configuration is toroidally symmetric, % =0 and flux
surfaces are conserved = intact KAM surfaces 1), = const.
Perturbation can arise (spontaneously or induced on purpose) that
break toroidal symmetry: the corresponding perturbed Hamiltonian
can be expressed as

/
T/’(d’pv@vo = /qupP + Z yam,n(@%) sin(mf — n¢) . (4)

which is in the form H = Hy + aH;
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RFP topology (code ORBIT)

#29324 t=218 ms @ 6= 0.000 m RFX co-ordinates
S e . T

0.10

0.08|

0.06

Yo

0.04

0.02

0
¢ (rad)

Dominant mode is the g = 1/7 in the core, and 0/7 in the plasma
edge. In between, a chaotic sea determined by m=1,n>7

resonance overlapping.
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RFP topology (code ORBIT)

#29324 t=218 ms @ 6= 0000 n  RFX co—ordmotes

0.10T

0.08

0.06
s

0.04

0.02

0.00

0
¢ (rad)

The chaotic sea touches the wall ( ) at ¢ &~ 0 in shot

#29324 — phase locking of the m =1, n > 7 modes (Locked
Mode or LM)
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Locked Mode and Plasma-Wall Interaction (PWI)

Locked modes are responsible for enhanced Plasma Wall
Interaction (PWI) which induces overheating of the Plasma Facing
Components, carbon sputtering, and radiation!

— ... all of these must be avoided in a fusion reactor!

Goals:

» Determine which modes are
involved in the PWI event;

» Try to mitigate/avoid the LM and
associated PWI.

'P.Scarin et al, 59, 086008 (2019)
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https://doi.org/10.1088/1741-4326/ab2071

Topology and connection lengths in the LM region

Topology in the region of the Locked Mode has two distinct
symmetries:

#29324 t=218 ms ©@ 6= 0.000 m RFX co-ordinotes
100 T T T

, E » m =1 chaotic sea
which touches the
wall;

>
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Topology and connection lengths in the LM region

Metric to characterize the PWI: connection length L., to the

wall?:

#29324 t=218 ms @ 6= 0.000 m RFX co-ordinotes
0.10F 7 T T

wall B d(
B-V(
(5)

Lealp0.0) = [

Short L¢,, = large
plasma-wall interaction

2F. Nguyen and P. Ghendrih, Nuclear Fusion 37, 743 (1997)
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https://doi.org/10.1088/0029-5515/37/6/I03

Comparison between connection length and camera images

The map of connection length and camera images of plasma-wall
interaction qualitatively agree3 :

» L., calculated at
: shot#29324,t=218ms,\[’p=0A09 : = wp/ww ~ 0.9 on the

(0,¢) plane shows
two stripes

I
05 [

6 [rad]

00 =

0.5 [—

6 [rad]
° °
o o

o
o

-0.2 0.0
¢ [rad]

Do
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(0,¢) plane shows
two stripes
: » the left, wide one
corresponds to the
2 nearest m = 0 island

I
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Poincaré Recurrence Time

P> We have seen that the connection length is a good indicator
of the chaos topology and PWI in the plasma edge

*G. M. Zaslavsky, , Oxford
University Press, pp.173-186 (2004)
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*G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford
University Press, pp.173-186 (2004)
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Poincaré Recurrence Time

P> We have seen that the connection length is a good indicator
of the chaos topology and PWI in the plasma edge

» ... but is not uniquely defined: it depends on start and end
points, calculation is clumsy and very long when ¢, — 0

» Better indicator: Poincaré Recurrence Time?

7_(rec) :T(esc) + 7_(ext)

=tout — tin1 + tin2 — touT
=tin2 — tint

(6)

*G. M. Zaslavsky, , Oxford

University Press, pp.173-186 (2004)
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Poincaré Recurrence Time in RFX

#29324 t=218 ms @ = 0.000 © Orbit co—ordinates
T T T T T
0.10 P wall

Define an ellipsoid in (¢, 8, () near the LM at ¢ = 0.

Contrary to Boltzmann evaluation for a perfect gas, in a toroidal
device 7("©) < 10007, with T the transit time of a particle (field
line) on axis — it is not a very large time!

=] F




Statistics of recurrences

For each particle we record successive recurrence times in Eq. (6)

and calculate the p.d.f. of recurrences

10°F B
t /
P, ~e and 7= —0.11 7,
4 T -
10 xg
A
v 107 B
ik
¢ b
o g2k T ,
- 10 \tqu
\ ",
L ,
10 \ -
\ + + +
100+ \ +HE+ ++ o+ + + H+
A . . . .
0 200 400 600 800
M/ Tior

For short times we have an
exponential law

where TmixVen = Li is the
Kolmogorov length
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Statistics of recurrences

For each particle we record successive recurrence times in Eq. (6)
and calculate the p.d.f. of recurrences

For longer times there is a

o 7 power-law tail, P(t) ~ t~7
10+ B 1
. with v~ 3
PRLY . 1 — this tail an
8ot N, . unambiguous proof of the
++ . " .
kb e, i existence of "dynamical
o AN | traps” = islands and
10 L+
- s P sticky regions with zero

M/ Lyapunov exponents?

M. Veranda et al.
60, 016007 (2019)
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Map of recurrences

Define the recurrence time as an average over the distribution®:

#29324 t=218 ms @ 6= 0.000 = RFX co-ordinates
[— T T

Jor e P(t)dt
Jo7 P(t)dt

Trec =

Low Tyec = large
plasma-wall interaction
(similar to Lc )
...BUT we can extend
) ' the calculation ~ 10cm
inside the plasmal

®G.Spizzo, M.Agostini, P.Scarin et al., Nuclear Fusion 575126055 (2017)

(7)
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Conclusions and Future Perspectives
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Conclusions and Future Perspectives

» Chaos theory is an important tool to understand particle
transport in toroidally confined plasmas for nuclear fusion
research

®G.Spizzo, R. White and S. Cappello, Physics of Plasmas , 102310 (2007)

"L.Marrelli et al, Nuclear Fusion 59, 076027 (2019)
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research

» Unperturbed toroidal flux surfaces = KAM tori

» Magnetohydrodynamic modes or applied perturbations break
toroidal symmetry — chaos

» Chaos anyway not far from the Chirikov stochastic threshold:
analysis of Poincaré recurrence times show clear signs of
dynamical traps, consistent with the subdiffusive character of
transport found in RFX plasmas®

» This information has been used for the upgrade of the
RFX-mod device in Padova, Italy: a modified front-end
system will allow for smaller m = 0 modes and a weaker
phase-locking of m = 1 modes’.

6G.Spizzo, R. White and S. Cappello, , 102310 (2007)

"L.Marrelli et al, 59, 076027 (2019)
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