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Outline

▶ Toroidal magnetic confinement devices for nuclear fusion
research are interesting environments for the application of
chaos theory

▶ Toroidal magnetic flux surfaces ≡ KAM tori

▶ Magnetic perturbations (spontaneous-magnetohydrodynamic,
or imposed by external means) break KAM surfaces → islands

▶ Resonance of many magnetic islands bring in chaos

▶ Study and control of chaos is fundamental for nuclear fusion
research → for example, for controlling Plasma-wall
Interaction (PWI)
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RFX group - Padova

RFX-modα a

reversed-field pinch
(RFP) → R = 2m,
a = 50cm, plasma
current IP ≈ 0.3÷ 2
MA
electron temperature
Te ∼ 0.2− 1.2 keV,
density
ne ∼ 1÷ 9× 1019m−3

aα = 0, 1, 2
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RFX group - Padova

q = m
n = 1

10

m, n are the poloidal & toroidal mode numbers

Definition of flux
surface:

F (r , θ, ζ) =const.

B⃗ · ∇F =0

(1)

Magnetic field lines
wind helically staying
tangent to the flux
surface

Toroidal flux surfaces
≡ KAM tori
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Equilibrium RFX - Padova

(a) Toroidal and Poloidal field B⃗
(b) Field helicity q, with first two resonances, q = 1/7 and q = 1/8
The other resonances, with m = 1,n = 9, 10 . . . are marked as
vertical, dashed lines
Note the m = 0 modes resonating at the reversal surface, q = 0
which are typical of the RFP
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Field-line Hamiltonian

The magnetic field line can be expressed in Hamiltonian form1

The time variable which appears in Hamilton equations is replaced
by the poloidal angle θ (small turn around the torus)
Find the contravariant representation of the field B⃗

B⃗ = ∇ψ ×∇θ −∇ψp ×∇ζ (2)

with ψ, ψp toroidal and poloidal flux, θ, ζ poloidal & toroidal angles
Identify 

Hamiltonian = ψ

Canonical conjugate momentum = ψp

angle = ζ

time = θ

(3)

1R.B. White, The theory of toroidally confined plasmas, Imperial College
Press (2014), pp.10–13
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Field-line Hamiltonian
Then the field-line Hamilton equations are:

dζ

dθ
=
∂ψ

∂ψp
= q (2)

dψp

dθ
=− ∂ψ

∂ζ
(3)

If the configuration is toroidally symmetric, ∂ψ∂ζ = 0 and flux
surfaces are conserved = intact KAM surfaces ψp = const.
Perturbation can arise (spontaneously or induced on purpose) that
break toroidal symmetry: the corresponding perturbed Hamiltonian
can be expressed as

ψ(ψp, θ, ζ) =

∫
qdψp +

∑
m,n

mg + nI

n
αm,n(ψp) sin(mθ− nζ) . (4)

which is in the form H = H0 + αH1
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RFP topology (code Orbit)

Dominant mode is the q = 1/7 in the core, and 0/7 in the plasma
edge. In between, a chaotic sea determined by m = 1, n > 7
resonance overlapping.
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RFP topology (code Orbit)

The chaotic sea touches the wall (yellow line) at ζ ≈ 0 in shot
#29324 → phase locking of the m = 1, n > 7 modes (Locked
Mode or LM)
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Locked Mode and Plasma-Wall Interaction (PWI)

Locked modes are responsible for enhanced Plasma Wall
Interaction (PWI) which induces overheating of the Plasma Facing
Components, carbon sputtering, and radiation1

→ . . . all of these must be avoided in a fusion reactor!

Goals:

▶ Determine which modes are
involved in the PWI event;

▶ Try to mitigate/avoid the LM and
associated PWI.

1P.Scarin et al, Nuclear Fusion 59, 086008 (2019)
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Topology and connection lengths in the LM region

Topology in the region of the Locked Mode has two distinct
symmetries:

▶ m = 1 chaotic sea
which touches the
wall;

▶ m = 0 islands.
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Topology and connection lengths in the LM region

Metric to characterize the PWI: connection length Lc,w to the
wall2:

Lc,w (ψp, θ, ζ) =

∫ wall B dζ

B⃗ · ∇ζ
(5)

Short Lc,w = large
plasma-wall interaction

2F. Nguyen and P. Ghendrih, Nuclear Fusion 37, 743 (1997)
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Comparison between connection length and camera images

The map of connection length and camera images of plasma-wall
interaction qualitatively agree3 :

▶ Lc,w calculated at
ψp/ψw ∼ 0.9 on the
(θ, ζ) plane shows
two stripes

▶ the left, wide one
corresponds to the
nearest m = 0 island

▶ the right, narrow one
corresponds to the
m = 1 locked mode

3Pasquale Porcu, Master’s Thesis, University of Padova (2022)
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Poincaré Recurrence Time

▶ We have seen that the connection length is a good indicator
of the chaos topology and PWI in the plasma edge

▶ . . . but is not uniquely defined: it depends on start and end
points, calculation is clumsy and very long when ψp → 0

▶ Better indicator: Poincaré Recurrence Time4

4G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford
University Press, pp.173–186 (2004)
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IN 1

OUT

IN 2

τ (rec) =τ (esc) + τ (ext)

=tOUT − tIN1 + tIN2 − tOUT

=tIN2 − tIN1

(6)
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Poincaré Recurrence Time in RFX

Define an ellipsoid in (ψp, θ, ζ) near the LM at ζ ≈ 0.
Contrary to Boltzmann evaluation for a perfect gas, in a toroidal
device τ (rec) ≲ 1000T , with T the transit time of a particle (field
line) on axis → it is not a very large time!
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Statistics of recurrences

For each particle we record successive recurrence times in Eq. (6)
and calculate the p.d.f. of recurrences

For short times we have an
exponential law

P(t) =
1

τmix
exp

(
−t

τmix

)
(7)

where τmixvth = Lk is the
Kolmogorov length
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Statistics of recurrences

For each particle we record successive recurrence times in Eq. (6)
and calculate the p.d.f. of recurrences

For longer times there is a
power-law tail, P(t) ∼ t−γ

with γ ∼ 3
→ this tail an
unambiguous proof of the
existence of ”dynamical
traps” = islands and
sticky regions with zero
Lyapunov exponentsa

aM. Veranda et al. Nuclear
Fusion 60, 016007 (2019)
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Map of recurrences

Define the recurrence time as an average over the distribution5:

τrec =

∫ +∞
0 t P(t)dt∫ +∞
0 P(t)dt

(7)

Low τrec = large
plasma-wall interaction
(similar to Lc,w )
. . . BUT we can extend
the calculation ∼ 10cm
inside the plasma!

5G.Spizzo, M.Agostini, P.Scarin et al., Nuclear Fusion 57, 126055 (2017)
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Conclusions and Future Perspectives
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Conclusions and Future Perspectives

▶ Chaos theory is an important tool to understand particle
transport in toroidally confined plasmas for nuclear fusion
research

▶ Unperturbed toroidal flux surfaces ≡ KAM tori

▶ Magnetohydrodynamic modes or applied perturbations break
toroidal symmetry → chaos

▶ Chaos anyway not far from the Chirikov stochastic threshold:
analysis of Poincaré recurrence times show clear signs of
dynamical traps, consistent with the subdiffusive character of
transport found in RFX plasmas6

▶ This information has been used for the upgrade of the
RFX-mod device in Padova, Italy: a modified front-end
system will allow for smaller m = 0 modes and a weaker
phase-locking of m = 1 modes7.

6G.Spizzo, R. White and S. Cappello, Physics of Plasmas , 102310 (2007)
7L.Marrelli et al, Nuclear Fusion 59, 076027 (2019)
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